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ABSTRACT

We investigate how the ordering of two Hermitian nonnegative definite matrices A
and B relates to the ordering of their squares A2 and B2, in the sense of the Lowner
partial ordering, the minus partial ordering, and the star partial ordering. The condition
that A and B commute appears essential in these investigations. We also give some
comments on possible extensions of our results by replacing the squares A2 and B2 with
the kth powers Ak and B k .

1. INTRODUCTION

For Hermitian nonnegative definite matrices A and B, the Lowner partial
L - *

ordering ~, the minus partial ordering ~ , and the star partial ordering ~
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are defined as follows:
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L
B - A = KK* for some matrix K, (1)A~B ~

A~B ~ A-A = A-B for some A-e A{1}, (2)

* A2 = AB, (3)A~B ~

where K* in (1) is the conjugate transpose of K, and A{I} in (2) denotes the
set of generalized inverses of A, i.e., A{1} = {X: AXA = A}. The ordering (1)
dates back to Lowner (1934). The orderings (2) and (3) are restrictions to
Hermitian matrices of the general definitions introduced by Hartwig (1980)
and Drazin (1978), respectively. Hartwig (1980) showed in addition that the
minus ordering is equivalent to rank subtractivity,

-
A ~ B ~ r(B - A) = r(B) - r(A). (4)

In view of Marsaglia and Styan (1974, p. 188) and Cline and Funderlic (1979,
p. 195), an alternative form of (4) for Hermitian A and B is

(5)

where ~ ( -) stands for the range and B + is the Moore-Penrose inverse of B. It
is known that for nonnegative definite matrices, the partial orderings (1), (2),
and (3) follow the implications

L
=> A ~ B; (6)

cd. Baksalary, Kala, and Klaczyriski (1983, p. 84) and Hartwig and Styan
(1987, Theorem 2.1).

L -
The purpose of this paper is to compare the relations A ~ B, A ~ B, and

A ~ B with the corresponding relations involving A2 and B2
. Notice that on

L
the cone of Hermitian nonnegative definite matrices, the relations .s..,.s..,and

*.s..,defined as
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L
A2 ~ B2

A~B ~ "" ,

A<B ~ A2 ;;;; B2 ,

* *
A~B ~ A2 ~ B2

,

specify further partial orderings. This is due to the fact that if A and Bare
Hermitian nonnegative definite matrices, then the equality between A2 and B 2

implies the equality between their unique square roots A and B. Stepniak
L

(1987) studied the problem of how the ordering i- behaves on sets of
matrices; see also Horn (1988) for an example disproving Stepniak's conjec
ture. In contrast, we here concentrate on pairs of matrices A and B, without

any further algebraic structure. Moreover, we consider the orderings ~ and
* L
~ in addition to ~. In the final section, we give some comments on possible
extensions of our results by replacing the squares A2 and B2 with the kth
powers Ak and B k.

2. RESULTS

Let A and B be two Hermitian nonnegative definite matrices. For the
Lowner ordering it is well known that

L
=> A ~ B;

d. Davis (1963, p. 199) and Marshall and Olkin (1979, p. 464). The converse
implication fails to hold in general, as can be seen by taking

(7)

see also a more general counterexample in Marshall and Olkin (1979, p. 465).

For the minus partial ordering, neither of the relations A;;;; Band A2
;;;; B2

implies the other. The matrices in (7) form an example that A;;;; B does not

imply A2
;;;; B2 , whereas

A = (; : ) and B = (V;~)
illustrate that A2

;;;; B 2 does not entail A;;;; B. However, when A and B
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commute, then they more nearly behave like real (or complex) numbers, and
relationships between orderings of matrices and orderings of their squares
become feasible. For the three partial orderings (1), (2), and (3), the results are
as follows.

THEOREM 1 (Lowner partial ordering). For Hermitian nonnegative definite
matrices A and B consider the following:

L
(aI) A ~ B,

2 L 2(bI ) A ~ B ,
(c) AB = BA.

Then (aI)' (c) ~ (b I), and (bil ~ (aI)'

THEOREM 2 (Minus partial ordering). For Hermitian nonnegative definite
matrices A and B consider the following:

(a2) A ~ B,

(b 2 ) A2 ~ B 2
,

(c) AB = BA.

Then any two of these statements imply the third statement.

THEOREM 3 (Star partial ordering). For Hermitian nonnegative definite
matrices A and B consider the following:

(a3) A';;; B,

(b3) A2
';;; B2

,

(c) AB = BA.

Then (a 3) # (b3 ) ~ (c).

We may summarize (6) and the results above by the following schematic
diagram in which ~ denotes the usual implication and ---> denotes the
implication which is valid under the commutativity condition AB = BA:

* L
A~B ~ A~B ~ A~B

1t U H U

A2 ';;; B2
~ A2 ~ B2

~ A2 ~ B2

3. PROOFS

In the course of the proofs we will use the following lemma on commuta
tivity of functions defined on the linear space [}(In of all n X n Hermitian
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matrices. If A E OOnhas the spectral decomposition A = UAU*, where U is a
unitary matrix and A is the diagonal matrix with the diagonal elements
Al,.. " Anequal to the eigenvalues of A, then a function I : 00--+ 00gives rise to
the function In : OOn--+ OOnby way of fn(A) = Ufn(A)U*, where fn(A) is the
diagonal matrix with the diagonal elements equal to f(A I ) , · · ·,f(A n ) .

LEMMA. Let A E OOnand BE OOn,let AI"'" Aa and ILl"'" ILb be the
distinct eigenvalues of A and B, and let the functions I ; {AI" . " Aa } --+ 00 and
g ; {ILl" . " ILb} --+ 00 be one-to-one. Then AB = BA if and only ifIn(A) gn(B) =

gn(B)fn(A) .

The proof of this lemma follows by using the fact that the commutativity is
a necessary and sufficient condition for two Hermitian matrices to admit
spectral decompositions with the same unitary matrix.

Proof of Theorem 1. For three alternative proofs that (bj ) implies (a l ) see
Davis (1983, p. 199) and Marshall and Olkin (1979, p. 464).

If A and B commute, then

(8)

for some unitary matrix U and nonnegative diagonal matrices DA and DB'
Consequently,

L
A~B •

Proof of Theorem 2. For the proof that (a2 ) and (b2 ) imply (c) first notice
that, in view of (5), condition (b2 ) is equivalent to

(9)

The equality AB+A = A in (5) entails

and then the equality in (9) yields

(10)

since (B +)2 = (B2) +. Applying the Lemma with I and g defined as f( x) = x 2

and g(x) = llx when x '*0 and g(O) = 0 to (10) leads to the commutativity
of A and B.
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The proof of the remaining two parts follows straightforwardly from the
fact that, in view of (5) and (8),

-
A ~ B <* a'(D A ) £: a'(D B) and DAD~DA = DA,

and

A2 ~ B2
<* a' (DA) £: a' (DB) and D~(D~) + D~ = D~.

This shows that if (c) holds, then conditions (a2) and (b2) are equivalent: each
of them is satisfied if and only if every diagonal element of DAis equal either
to zero or to the corresponding element of DB. •

Proof of Theorem 3. The statement "(a3) => (c)" is a direct consequence
of the definition (3), and the statement "(a 3) <* (b3)" follows from the part
"(a 2), (c) <* (b2), (c)" of Theorem 2, noting that (a3) <* (a2)' (c) [cf. Hartwig
and Styan (1986, Theorem 2)] and, similarly, (b3) <* (b2), (c). •

4. COMMENTS ON POSSIBLE EXTENSIONS

Professor Ingram Olkin asked about possible extensions of Theorems 1, 2,
and 3 by replacing the squares of A and B with the values \O(A)and \O(B)of
some more general function \0 : [}(In ---> [}(In. We comment here on this question
in the particular situation when \0 is the kth power function, that is, when

conditions (b.), (b2), and (b3) are replaced by (bf) Ak ~ Bk, (b:) Ak ~ Bk, and

(bf) Ak ~ B k
, respectively.

Our first observation is that the modified version of Theorem 1 remains
true for any k > 1. The part "(bf) => (all" is due to Lowner (1934) ref.
Marshall and Olkin (1979, p. 464)], and the part "(a i ) , (c) => (bf)" can be
established by similar arguments to those in the proof of Theorem 1; see also a
related result of Man (1970, Corollary 2).

The second observation is that, using the same argument of simultaneous
diagonalization of A and B, the parts "(a2)' (c) => (b2)" and "(b 2), (c) "" (a2)"
can be extended to "(a2), (c) => (b:)" and "(b:), (c) => (a2)." We were
unable, however, to prove or disprove that A ~ Band Ak ~ B k together imply
the commutativity of A and B when k "*2.

Our final observation is again positive, viz. that the statement in Theorem 3
can be generalized to the form (a3) <* (b3) => (c).
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